\(\int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx\) [110]

   Optimal result
   Rubi [A] (verified)
   Mathematica [A] (verified)
   Maple [C] (verified)
   Fricas [C] (verification not implemented)
   Sympy [F(-1)]
   Maxima [F]
   Giac [F(-1)]
   Mupad [F(-1)]

Optimal result

Integrand size = 42, antiderivative size = 241 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {154 a^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}} \]

[Out]

4*a*(g*cos(f*x+e))^(5/2)*(a+a*sin(f*x+e))^(3/2)/f/g/(c-c*sin(f*x+e))^(3/2)+154/15*a^3*(g*cos(f*x+e))^(5/2)/c/f
/g/(a+a*sin(f*x+e))^(1/2)/(c-c*sin(f*x+e))^(1/2)-154/5*a^3*g*(cos(1/2*f*x+1/2*e)^2)^(1/2)/cos(1/2*f*x+1/2*e)*E
llipticE(sin(1/2*f*x+1/2*e),2^(1/2))*cos(f*x+e)^(1/2)*(g*cos(f*x+e))^(1/2)/c/f/(a+a*sin(f*x+e))^(1/2)/(c-c*sin
(f*x+e))^(1/2)+22/5*a^2*(g*cos(f*x+e))^(5/2)*(a+a*sin(f*x+e))^(1/2)/c/f/g/(c-c*sin(f*x+e))^(1/2)

Rubi [A] (verified)

Time = 0.80 (sec) , antiderivative size = 241, normalized size of antiderivative = 1.00, number of steps used = 6, number of rules used = 5, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.119, Rules used = {2929, 2930, 2921, 2721, 2719} \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}-\frac {154 a^3 g \sqrt {\cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \sqrt {g \cos (e+f x)}}{5 c f \sqrt {a \sin (e+f x)+a} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 \sqrt {a \sin (e+f x)+a} (g \cos (e+f x))^{5/2}}{5 c f g \sqrt {c-c \sin (e+f x)}}+\frac {4 a (a \sin (e+f x)+a)^{3/2} (g \cos (e+f x))^{5/2}}{f g (c-c \sin (e+f x))^{3/2}} \]

[In]

Int[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

(4*a*(g*Cos[e + f*x])^(5/2)*(a + a*Sin[e + f*x])^(3/2))/(f*g*(c - c*Sin[e + f*x])^(3/2)) + (154*a^3*(g*Cos[e +
 f*x])^(5/2))/(15*c*f*g*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) - (154*a^3*g*Sqrt[Cos[e + f*x]]*Sqr
t[g*Cos[e + f*x]]*EllipticE[(e + f*x)/2, 2])/(5*c*f*Sqrt[a + a*Sin[e + f*x]]*Sqrt[c - c*Sin[e + f*x]]) + (22*a
^2*(g*Cos[e + f*x])^(5/2)*Sqrt[a + a*Sin[e + f*x]])/(5*c*f*g*Sqrt[c - c*Sin[e + f*x]])

Rule 2719

Int[Sqrt[sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[(2/d)*EllipticE[(1/2)*(c - Pi/2 + d*x), 2], x] /; FreeQ[{
c, d}, x]

Rule 2721

Int[((b_)*sin[(c_.) + (d_.)*(x_)])^(n_), x_Symbol] :> Dist[(b*Sin[c + d*x])^n/Sin[c + d*x]^n, Int[Sin[c + d*x]
^n, x], x] /; FreeQ[{b, c, d}, x] && LtQ[-1, n, 1] && IntegerQ[2*n]

Rule 2921

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)/(Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]*Sqrt[(c_) + (d_.)*sin[(e_
.) + (f_.)*(x_)]]), x_Symbol] :> Dist[g*(Cos[e + f*x]/(Sqrt[a + b*Sin[e + f*x]]*Sqrt[c + d*Sin[e + f*x]])), In
t[(g*Cos[e + f*x])^(p - 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c + a*d, 0] && EqQ[a^2 - b^2
, 0]

Rule 2929

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[-2*b*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(2*n + p + 1))), x] - Dist[b*((2*m + p - 1)/(d*(2*n + p + 1))), Int[(g*Cos[e + f*x])^p*(a + b*
Sin[e + f*x])^(m - 1)*(c + d*Sin[e + f*x])^(n + 1), x], x] /; FreeQ[{a, b, c, d, e, f, g, p}, x] && EqQ[b*c +
a*d, 0] && EqQ[a^2 - b^2, 0] && GtQ[m, 0] && LtQ[n, -1] && NeQ[2*n + p + 1, 0] && IntegersQ[2*m, 2*n, 2*p]

Rule 2930

Int[(cos[(e_.) + (f_.)*(x_)]*(g_.))^(p_)*((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_) + (d_.)*sin[(e_.) +
 (f_.)*(x_)])^(n_), x_Symbol] :> Simp[(-b)*(g*Cos[e + f*x])^(p + 1)*(a + b*Sin[e + f*x])^(m - 1)*((c + d*Sin[e
 + f*x])^n/(f*g*(m + n + p))), x] + Dist[a*((2*m + p - 1)/(m + n + p)), Int[(g*Cos[e + f*x])^p*(a + b*Sin[e +
f*x])^(m - 1)*(c + d*Sin[e + f*x])^n, x], x] /; FreeQ[{a, b, c, d, e, f, g, n, p}, x] && EqQ[b*c + a*d, 0] &&
EqQ[a^2 - b^2, 0] && GtQ[m, 0] && NeQ[m + n + p, 0] &&  !LtQ[0, n, m] && IntegersQ[2*m, 2*n, 2*p]

Rubi steps \begin{align*} \text {integral}& = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}-\frac {(11 a) \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{3/2}}{\sqrt {c-c \sin (e+f x)}} \, dx}{c} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}}-\frac {\left (77 a^2\right ) \int \frac {(g \cos (e+f x))^{3/2} \sqrt {a+a \sin (e+f x)}}{\sqrt {c-c \sin (e+f x)}} \, dx}{5 c} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}}-\frac {\left (77 a^3\right ) \int \frac {(g \cos (e+f x))^{3/2}}{\sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \, dx}{5 c} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}}-\frac {\left (77 a^3 g \cos (e+f x)\right ) \int \sqrt {g \cos (e+f x)} \, dx}{5 c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}}-\frac {\left (77 a^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)}\right ) \int \sqrt {\cos (e+f x)} \, dx}{5 c \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}} \\ & = \frac {4 a (g \cos (e+f x))^{5/2} (a+a \sin (e+f x))^{3/2}}{f g (c-c \sin (e+f x))^{3/2}}+\frac {154 a^3 (g \cos (e+f x))^{5/2}}{15 c f g \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}-\frac {154 a^3 g \sqrt {\cos (e+f x)} \sqrt {g \cos (e+f x)} E\left (\left .\frac {1}{2} (e+f x)\right |2\right )}{5 c f \sqrt {a+a \sin (e+f x)} \sqrt {c-c \sin (e+f x)}}+\frac {22 a^2 (g \cos (e+f x))^{5/2} \sqrt {a+a \sin (e+f x)}}{5 c f g \sqrt {c-c \sin (e+f x)}} \\ \end{align*}

Mathematica [A] (verified)

Time = 11.45 (sec) , antiderivative size = 240, normalized size of antiderivative = 1.00 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {(g \cos (e+f x))^{3/2} \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )^2 (a (1+\sin (e+f x)))^{5/2} \left (-924 E\left (\left .\frac {1}{2} (e+f x)\right |2\right ) \left (\cos \left (\frac {1}{2} (e+f x)\right )-\sin \left (\frac {1}{2} (e+f x)\right )\right )+\sqrt {\cos (e+f x)} \left (520 \cos \left (\frac {1}{2} (e+f x)\right )+37 \cos \left (\frac {3}{2} (e+f x)\right )+3 \cos \left (\frac {5}{2} (e+f x)\right )+520 \sin \left (\frac {1}{2} (e+f x)\right )-37 \sin \left (\frac {3}{2} (e+f x)\right )+3 \sin \left (\frac {5}{2} (e+f x)\right )\right )\right )}{30 c f \cos ^{\frac {3}{2}}(e+f x) \left (\cos \left (\frac {1}{2} (e+f x)\right )+\sin \left (\frac {1}{2} (e+f x)\right )\right )^5 (-1+\sin (e+f x)) \sqrt {c-c \sin (e+f x)}} \]

[In]

Integrate[((g*Cos[e + f*x])^(3/2)*(a + a*Sin[e + f*x])^(5/2))/(c - c*Sin[e + f*x])^(3/2),x]

[Out]

-1/30*((g*Cos[e + f*x])^(3/2)*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2])^2*(a*(1 + Sin[e + f*x]))^(5/2)*(-924*Ellip
ticE[(e + f*x)/2, 2]*(Cos[(e + f*x)/2] - Sin[(e + f*x)/2]) + Sqrt[Cos[e + f*x]]*(520*Cos[(e + f*x)/2] + 37*Cos
[(3*(e + f*x))/2] + 3*Cos[(5*(e + f*x))/2] + 520*Sin[(e + f*x)/2] - 37*Sin[(3*(e + f*x))/2] + 3*Sin[(5*(e + f*
x))/2])))/(c*f*Cos[e + f*x]^(3/2)*(Cos[(e + f*x)/2] + Sin[(e + f*x)/2])^5*(-1 + Sin[e + f*x])*Sqrt[c - c*Sin[e
 + f*x]])

Maple [C] (verified)

Result contains complex when optimal does not.

Time = 2.75 (sec) , antiderivative size = 1511, normalized size of antiderivative = 6.27

method result size
default \(\text {Expression too large to display}\) \(1511\)

[In]

int((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x,method=_RETURNVERBOSE)

[Out]

2/15/f*(g*cos(f*x+e))^(1/2)*(a*(1+sin(f*x+e)))^(1/2)*g*a^2/(1+sin(f*x+e))/(1+cos(f*x+e))/(-c*(sin(f*x+e)-1))^(
1/2)/c*(30*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(
f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)^3-30*ln((2*(-cos(f*x+e)/(1+cos(f*x+e
))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+co
s(f*x+e))^2)^(3/2)*cos(f*x+e)^3+231*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(
csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)^2+462*I*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*(
cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)+120*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-co
s(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)
^2-120*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)
+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)^2+231*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+
e)/(1+cos(f*x+e)))^(1/2)*EllipticF(I*(csc(f*x+e)-cot(f*x+e)),I)-231*I*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+
cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)*cos(f*x+e)^2+180*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))
^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(
f*x+e))^2)^(3/2)*cos(f*x+e)-180*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*
x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*cos(f*x+e)-462*I*EllipticE(I
*(csc(f*x+e)-cot(f*x+e)),I)*(1/(1+cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*cos(f*x+e)-231*I*(1/(1+
cos(f*x+e)))^(1/2)*(cos(f*x+e)/(1+cos(f*x+e)))^(1/2)*EllipticE(I*(csc(f*x+e)-cot(f*x+e)),I)+120*ln(2*(2*(-cos(
f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))
*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)-120*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)
/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)+3*cos(f*x+e)^3*sin
(f*x+e)+30*ln(2*(2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(
f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(3/2)*sec(f*x+e)-30*ln((2*(-cos(f*x+e)/(1+cos(f*x+e))
^2)^(1/2)*cos(f*x+e)+2*(-cos(f*x+e)/(1+cos(f*x+e))^2)^(1/2)-cos(f*x+e)+1)/(1+cos(f*x+e)))*(-cos(f*x+e)/(1+cos(
f*x+e))^2)^(3/2)*sec(f*x+e)+20*cos(f*x+e)^3+3*cos(f*x+e)^2*sin(f*x+e)+20*cos(f*x+e)^2-111*cos(f*x+e)*sin(f*x+e
)+120*cos(f*x+e)+120*sin(f*x+e)+120)

Fricas [C] (verification not implemented)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 0.12 (sec) , antiderivative size = 201, normalized size of antiderivative = 0.83 \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=-\frac {2 \, {\left (3 \, a^{2} g \cos \left (f x + e\right )^{2} - 17 \, a^{2} g \sin \left (f x + e\right ) + 137 \, a^{2} g\right )} \sqrt {g \cos \left (f x + e\right )} \sqrt {a \sin \left (f x + e\right ) + a} \sqrt {-c \sin \left (f x + e\right ) + c} + 231 \, {\left (-i \, \sqrt {2} a^{2} g \sin \left (f x + e\right ) + i \, \sqrt {2} a^{2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) + i \, \sin \left (f x + e\right )\right )\right ) + 231 \, {\left (i \, \sqrt {2} a^{2} g \sin \left (f x + e\right ) - i \, \sqrt {2} a^{2} g\right )} \sqrt {a c g} {\rm weierstrassZeta}\left (-4, 0, {\rm weierstrassPInverse}\left (-4, 0, \cos \left (f x + e\right ) - i \, \sin \left (f x + e\right )\right )\right )}{15 \, {\left (c^{2} f \sin \left (f x + e\right ) - c^{2} f\right )}} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="fricas")

[Out]

-1/15*(2*(3*a^2*g*cos(f*x + e)^2 - 17*a^2*g*sin(f*x + e) + 137*a^2*g)*sqrt(g*cos(f*x + e))*sqrt(a*sin(f*x + e)
 + a)*sqrt(-c*sin(f*x + e) + c) + 231*(-I*sqrt(2)*a^2*g*sin(f*x + e) + I*sqrt(2)*a^2*g)*sqrt(a*c*g)*weierstras
sZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) + I*sin(f*x + e))) + 231*(I*sqrt(2)*a^2*g*sin(f*x + e) -
I*sqrt(2)*a^2*g)*sqrt(a*c*g)*weierstrassZeta(-4, 0, weierstrassPInverse(-4, 0, cos(f*x + e) - I*sin(f*x + e)))
)/(c^2*f*sin(f*x + e) - c^2*f)

Sympy [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))**(3/2)*(a+a*sin(f*x+e))**(5/2)/(c-c*sin(f*x+e))**(3/2),x)

[Out]

Timed out

Maxima [F]

\[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int { \frac {\left (g \cos \left (f x + e\right )\right )^{\frac {3}{2}} {\left (a \sin \left (f x + e\right ) + a\right )}^{\frac {5}{2}}}{{\left (-c \sin \left (f x + e\right ) + c\right )}^{\frac {3}{2}}} \,d x } \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="maxima")

[Out]

integrate((g*cos(f*x + e))^(3/2)*(a*sin(f*x + e) + a)^(5/2)/(-c*sin(f*x + e) + c)^(3/2), x)

Giac [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\text {Timed out} \]

[In]

integrate((g*cos(f*x+e))^(3/2)*(a+a*sin(f*x+e))^(5/2)/(c-c*sin(f*x+e))^(3/2),x, algorithm="giac")

[Out]

Timed out

Mupad [F(-1)]

Timed out. \[ \int \frac {(g \cos (e+f x))^{3/2} (a+a \sin (e+f x))^{5/2}}{(c-c \sin (e+f x))^{3/2}} \, dx=\int \frac {{\left (g\,\cos \left (e+f\,x\right )\right )}^{3/2}\,{\left (a+a\,\sin \left (e+f\,x\right )\right )}^{5/2}}{{\left (c-c\,\sin \left (e+f\,x\right )\right )}^{3/2}} \,d x \]

[In]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(5/2))/(c - c*sin(e + f*x))^(3/2),x)

[Out]

int(((g*cos(e + f*x))^(3/2)*(a + a*sin(e + f*x))^(5/2))/(c - c*sin(e + f*x))^(3/2), x)